GPU-Accelerated Multivariate Empirical Mode Decomposition for Massive Neural Data Processing
نویسندگان
چکیده
منابع مشابه
Multivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization
Quantifying the phase synchrony between signals is important in many different applications, including the study of the chaotic oscillators in physics and the modeling of the joint dynamics between channels of brain activity recorded by electroencephalogram (EEG). Current measures of phase synchrony rely on either the wavelet transform or the Hilbert transform of the signals and suffer from con...
متن کاملEmpirical mode decomposition: a method for analyzing neural data
Almost all processes that are quantified in neurobiology are stochastic and nonstationary. Conventional methods that characterize these processes to provide a meaningful and precise description of complex neurobiological phenomenon may be insufficient. Here, we report on the use of the data-driven empirical mode decomposition (EMD) method to study neuronal activity in visual cortical area V4 of...
متن کاملToward GPU Accelerated Data Stream Processing
In recent years, the need for continuous processing and analysis of data streams has increased rapidly. To achieve high throughput-rates, stream-applications make use of operatorparallelization, batching-strategies and distribution. Another possibility is to utilize co-processors capabilities per operator. Further, the database community noticed, that a columnoriented architecture is essential ...
متن کاملNoise-assisted multivariate empirical mode decomposition for multichannel EMG signals
BACKGROUND Ensemble Empirical Mode Decomposition (EEMD) has been popularised for single-channel Electromyography (EMG) signal processing as it can effectively extract the temporal information of the EMG time series. However, few papers examine the temporal and spatial characteristics across multiple muscle groups in relation to multichannel EMG signals. EXPERIMENT The experimental data was ob...
متن کاملMultivariate empirical mode decomposition and application to multichannel filtering
Empirical Mode Decomposition (EMD) is an emerging topic in signal processing research, applied in various practical fields due in particular to its data-driven filter bank properties. In this paper, a novel EMD approach called X-EMD (eXtended-EMD) is proposed, which allows for a straightforward decomposition of monoand multivariate signals without any change in the core of the algorithm. Qualit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2017
ISSN: 2169-3536
DOI: 10.1109/access.2017.2705136